EUROPEAN TECHNICAL ASSESSMENT

XPRO

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

of 16 May 2018

ETA-10/0262

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Scell-IT Injection System X-PRO, X-PRO Nordic for concrete

Bonded fastener for use in concrete

SCELL-IT 28 Rue Paul Dubrule 59854 LESQUIN FRANKREICH

SCELL-IT, Plant1 Germany

25 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-10/0262 English translation prepared by DIBt

Page 2 of 25 | 16 May 2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 16 May 2018

European Technical Assessment ETA-10/0262 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Scell-IT Injection system X-PRO, X-PRO Nordic for concrete" is a bonded anchor consisting of a cartridge with injection mortar X-PRO or X-PRO Nordic and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter Ø8 to Ø32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1, C 2, C 4 and C 6
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 3, C 5 and C 7
Displacements	See Annex
(static and quasi-static loading)	C 8 to C 10
Characteristic resistance for seismic performance	See Annex
category C1	C 2, C 3, C 6 and C 7
Characteristic resistance and displacements for seismic performance category C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

	Essential characteristic	Performance
F	Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-10/0262

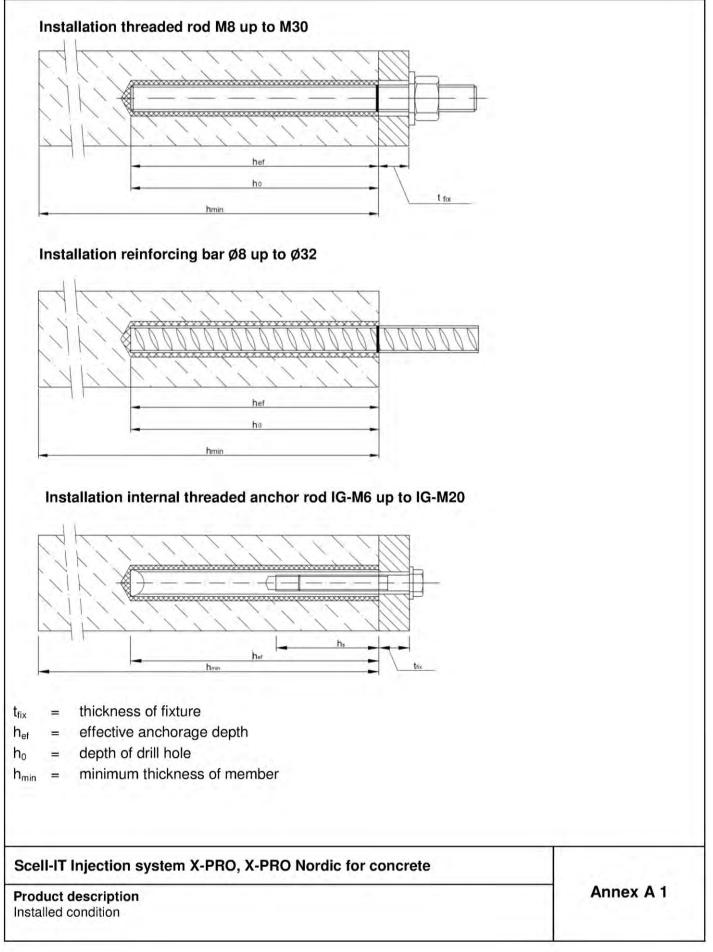
Page 4 of 25 | 16 May 2018

English translation prepared by DIBt

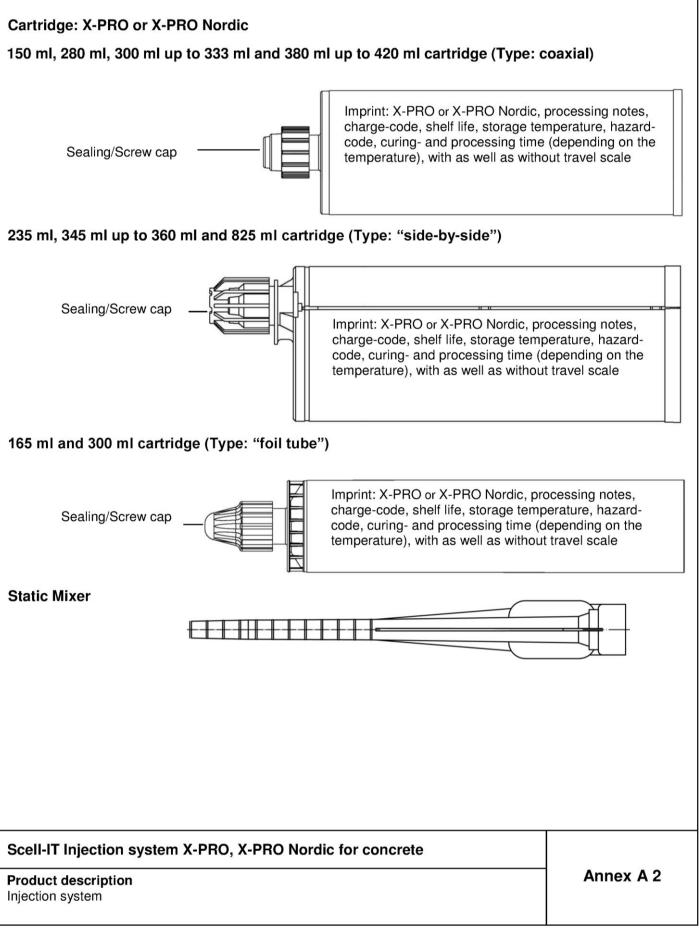
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 16 May 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

. -	L _{ges}	cial standard threaded
	rod with:	
		erials, dimensions and hanical properties acc.
h _{ef}	Tab Tab	le A1
/		ection certificate 3.1 acc N 10204:2004
		king of embedment
		'n
$-\overline{()}$		
ternal Internal threaded anchor	rod IG-M6, IG-M8, IG-M10, IG-M12, IG-M16,	IG-M20
		(A)
Threaded rod or Screw	Mark of the producer	φ
	q 7	σ
	h ef	
	Marking: e.g.	
	Marking Internal thread	
	M8 Thread size (Internal thread)	
	A4 additional mark for stainless steel	
	HCR additional mark for high-corrosion re	sistance steel
	on nozzle for filling the annular gap between	n anchor rod and
sture (3b)		
5	mm	
cell-IT Injection system X-PRO,	X-PRO Nordic for concrete	1.15.27

Та	ble A1: Materials				
	Designation	Material			
	I, zinc plated (Steel acc. to EN 10				
	plated \geq 5 µm acc. to EN ISO 4042:				9 and
	SO 10684:2004+AC:2009 or sherard	lized ≥ 40 µm acc. to D			A participation
			4.6	f_{uk} =400 N/mm ² ; f_{yk} =240 N/mm ² ; f_{uk} =240 N/mm ² ; f_{uk} =220 N/mm ² ; f_{uk} =20 N/m ² ; f_{uk}	
		Property class	4.8	f _{uk} =400 N/mm ² ; f _{yk} =320 N/mm ² ; <i>I</i>	
1	Anchor rod	acc. to EN ISO 898-1:2013	5.6	f _{uk} =500 N/mm ² ; f _{yk} =300 N/mm ² ; A	-
		EN 150 696-1.2015	5.8	f _{uk} =500 N/mm ² ; f _{yk} =400 N/mm ² ; A	-
			8.8	f _{uk} =800 N/mm ² ; f _{yk} =640 N/mm ² ; A	$A_5 > 8\%$ fracture elongation
		Property class	4	for anchor rod class 4.6 or 4.8	
2	Hexagon nut	acc. to	5	for anchor rod class 5.6 or 5.8	
		EN ISO 898-2:2012	8	for anchor rod class 8.8	
	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer	Steel, zinc plated, hot-	dip gal	vanised or sherardized	
30		Property class	5.8	f _{uk} =500 N/mm²; f _{yk} =400 N/mm²	: $A_5 > 8\%$ fracture elongation
4	Internal threaded anchor rod	acc. to		,	-
		EN ISO 898-1:2013	8.8		· •
-	nless steel A2 (Material 1.4301 / 1.	4303 / 1.4307 / 1.4567	oder 1	.4541, acc. to EN 10088-1:201	4)
nd	nless steel A4 (Material 1.4401 / 1.	AADA / 1 A571 / 1 A362	or 1 4	578 and to EN 10088-1:2014)	
lan			50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A	- > 8% fracture elemention
1	Anchor rod ¹⁾³⁾	Property class acc. to	70	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; A	
'		EN ISO 3506-1:2009	80	f _{uk} =800 N/mm ² ; f _{yk} =600 N/mm ² ; A	
			50	for anchor rod class 50	
2	Hexagon nut ¹⁾³⁾	Property class acc. to	70	for anchor rod class 70	
-		EN ISO 3506-1:2009	80	for anchor rod class 80	
	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾			/ 1.4307 / 1.4567 or 1.4541, EN / 1.4571 / 1.4362 or 1.4578, EN	
	-	Property class	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ²	; $A_5 > 8\%$ fracture elongation
4	Internal threaded anchor rod ¹⁾²⁾	acc. to EN ISO 3506-1:2009	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ²	-
liah	corrosion resistance steel (Mate				, 15 > 070 nabiaro olongalio
ngn		1	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A	$\Lambda_{-} > 8\%$ fracture elemention
1	Anchor rod ¹⁾	Property class acc. to	70	$f_{uk}=700 \text{ N/mm}^2$; $f_{yk}=450 \text{ N/mm}^2$; $f_{vk}=450 \text{ N/mm}$	
'		EN ISO 3506-1:2009	80	f _{uk} =800 N/mm ² ; f _{yk} =600 N/mm ² ; <i>A</i>	
			50	for anchor rod class 50	
2	Hexagon nut ¹⁾	Property class acc. to	70	for anchor rod class 70	
-		EN ISO 3506-1:2009	80	for anchor rod class 80	
3a	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4529 or 1.4		c. to EN 10088-1: 2014	
3b	Filling washer				
4	Internal threaded anchor rod ^{1) 2)}	Property class acc. to	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ²	; $A_5 > 8\%$ fracture elongatio
7		EN ISO 3506-1:2009	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ²	; A ₅ > 8% fracture elongatio
2). 3)	Property class 70 for anchor rods up to N for IG-M20 only property class 50 Property class 70 only for stainless steel Filling washer only with stainless steel A	A4	anchor	rods up to IG-M16,	
Pro	ell-IT Injection system X-PR	-	for co	oncrete	Annex A 4

Image: Second	Reir	Reinforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 25, Ø 28, Ø 32								
Minimum value of related rip area f _{Rumin} according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range 0.05d ≤ h ≤ 0.07d (d: Nominal diameter of the bar; h: Rip height of the bar) Table A2: Materials Part Designation Reinforcing bars 1 Rebar 1 Rebar 1 Rebar 1 Rebar 1 Rebar 1 Rebar 5 Rebar 1 Reba										
Minimum value of related rip area f _{Rumin} according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range 0.05d ≤ h ≤ 0.07d (d: Nominal diameter of the bar; h: Rip height of the bar) Table A2: Materials Part Designation Reinforcing bars 1 Rebar 1 Rebar 1 Rebar 1 Rebar 1 Rebar 1 Rebar 5 Rebar 1 Reba										
Minimum value of related rip area f _{Rumin} according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range 0.05d ≤ h ≤ 0.07d (d: Nominal diameter of the bar; h: Rip height of the bar) Table A2: Materials Part Designation Reinforcing bars 1 Rebar 1 Reba		h _{ef} I								
 Rib height of the bar shall be in the range 0.05d ≤ h ≤ 0.07d (d: Nominal diameter of the bar; h: Rip height of the bar) Table A2: Materials Part Designation Material Reinforcing bars 1 Rebar EN 1992-1-1:2004+AC:2010, Annex C Bars and de-colled rods class B or C 1/μ and k according to NDP or NCL of EN 1992-1-1/NA:2013 1/μ = f_{ik} = k<f<sub>jk. </f<sub> Scell-IT Injection system X-PRO, X-PRO Nordic for concrete Product description 		✓ Tet ►								
(d: Nominal diameter of the bar; h: Rip height of the bar) Table A2: Materials Part Designation Material Reinforcing bars Bars and de-coiled rods class B or C f _p and k according to NDP or NCL of EN 1992-1-1/NA:2013 f _{uk} = f _{ik} = k·f _{jk} 1 Rebar EN 1992-1-1:2004+AC:2010, Annex C Bars and de-coiled rods class B or C f _p and k according to NDP or NCL of EN 1992-1-1/NA:2013 f _{uk} = f _{ik} = k·f _{jk} Scell-IT Injection system X-PRO, X-PRO Nordic for concrete Product description Annex A 5		- ,	-							
Part Designation Material Reinforcing bars 1 Rebar EN 1992-1-1:2004+AC:2010, Annex C Bars and de-coiled rods class B or C fyk and k according to NDP or NCL of EN 1992-1-1/NA:2013 fuk = fik = k*fyk Scell-IT Injection system X-PRO, X-PRO Nordic for concrete Product description Annex A 5										
Part Designation Material Reinforcing bars 1 Rebar EN 1992-1-1:2004+AC:2010, Annex C Bars and de-coiled rods class B or C f _{jk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 f _{ick} = f _{ik} = k+f _{jk} Scell-IT Injection system X-PRO, X-PRO Nordic for concrete Product description Annex A 5										
Part Designation Material Reinforcing bars Pebar N 1992-1-1:2004+AC:2010, Annex C Bars and de-coiled rods class B or C f_{jk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 f_{jk} = f_{jk} = k+f_{jk} Scell-IT Injection system X-PRO, X-PRO Nordic for concrete Annex A 5										
Part Designation Material Reinforcing bars 1 Rebar EN 1992-1-1:2004+AC:2010, Annex C Bars and de-coiled rods class B or C fyk and k according to NDP or NCL of EN 1992-1-1/NA:2013 fuk = fik = k*fyk Scell-IT Injection system X-PRO, X-PRO Nordic for concrete Product description Annex A 5	Tab	la A2: Matariala								
Reinforcing bars 1 Rebar EN 1992-1-1:2004+AC:2010, Annex C Bars and de-coiled rods class B or C fyk and k according to NDP or NCL of EN 1992-1-1/NA:2013 tuk = fik = k*fyk Scell-IT Injection system X-PRO, X-PRO Nordic for concrete Product description Annex A 5										
1 Rebar Bars and de-coiled rods class B or C 1, w and k according to NDP or NGL of EN 1992-1-1/NA:2013 The second se			Material							
1 Predar F _{t/k} and k according to NDP or NCL of EN 1992-1-1/NA:2013 1 F _{t/k} = f _{t/k} = k+f _{yk} 1 F _{t/k} = f _{t/k} = k+f _{yk} 1 Scell-IT Injection system X-PRO, X-PRO Nordic for concrete Product description Annex A 5	Reinf	orcing bars	1							
Product description Annex A 5	1	1 Repart f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013								
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5										
Product description Annex A 5	Sce	II-IT Injection system X-PRO, X-PRO N	ordic for concrete							
				Annex A 5						

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.

Base materials:

- · Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The Anchorages are designed in accordance to:
 FprEN 1992-4:2017 and Technical Report TR055

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete

Intended Use Specifications Annex B 1

Deutsches Institut für Bautechnik

Anchor size				M 8	м	10	M 12	1	М 16	M 20	М 2	4	M 27	M 30
Outer diameter of anchor		d _{nom} [mm]	1 =	8	1	0	12	+	16	20	24		27	30
Nominal drill hole diameter		d _o [mm]		10	1	2	14	+	18	24	28		32	35
		h _{ef,min} [mm] =		60	6	60	70		80	90	96		108	120
Effective anchorage depth	h _{ef,max} [mm]] =	160	2	00	240		320	400	480)	540	600
Diameter of clearance hole in the fixture		d _f [mm] :		9	1	2	14		18	22	26		30	33
Diameter of steel brush		d _b [mm]		12	1	4	16		20	26	30		34	37
Maximum torque moment		T _{inst} [Nm]≤	10	2	20	40		80	120	160)	180	200
Minimum thickness of memb	ber	h _{min} [m	m]	h _{ef} +	30 mn	n ≥ 10	0 mm		•		h _{ef} + 2	$2d_0$		
Minimum spacing		s _{min} [m	m]	40	5	60	60		80	100	120)	135	150
Minimum edge distance		c _{min} [m	m]	40	5	50	60		80	100	120)	135	150
Rebar size Outer diameter of anchor	d	_{nom} [mm] =		8 3	Ø 10 10	Ø 12		14 4	Ø 16	Ø 20 20		25	Ø 28 28	Ø 32 32
Table B2: Installation						Q 10		1/	Ø 16	<i>a</i> 20	a	25	a 20	<i>a</i> 22
Outer diameter of anchor	d	_{nom} [mm] =	6	3	10	12	1	4	16	20	2	25	28	32
Nominal drill hole diameter		d ₀ [mm] =	1	2	14	16	_	8	20	24	3	2	35	40
Effective anchorage depth		$_{\rm ef,min} [\rm mm] = 60$			60	70	_	'5	80	90	-	00	112	128
	h _{ef,}	_{,max} [mm] =		50	200	240	_	80	320	400		00	580	640
Diameter of steel brush		d _b [mm] ≥		4	16	18	2	20	22	26	3	4	37	41,5
Minimum thickness of member		h _{min} [mm]	2	: 100 ו	+ 30 mm 100 mm				1	h _{ef} + 20				
Minimum spacing		s _{min} [mm]		0	50	60	_	0	80	100		25	140	160
Minimum edge distance		c _{min} [mm]	4	0	50	60	7	0	80	100	12	25	140	160
Table B3: Installation	on pa	arameters	s fo	or int	ernal	thre	adec	l ar	nchor	rod				
Size internal threaded anchor	rod				G-M 6	10	i-M 8		G-M 10	IG-M	12	IG-N	/ 16	G-M 20
Internal diameter of anchor		d ₂ [mm] =	6		8		10	12		1	6	20
Outer diameter of anchor ¹⁾		d _{nom} [mm] =	10		12		16	20		2	4	30
Nominal drill hole diameter		d ₀ [12		14		18	22		2	8	35
Effective anchorage depth		h _{ef,min} [mm] =	60		70		80	90		9		120
		h _{ef,max} [mm] =	200	:	240		320	400		48	30	600
Diameter of clearance			mm	-	7		9		12	14			8	22
		T _{inst} [N]≤	10		10		20	40		6	0	100
Maximum torque moment	Thread engagement length					8/20		1	10/25 12/30			16/32		
Maximum torque moment Thread engagement length			l _{IG} [mm] =						10/25	12/3	0	16/	/32	20/40
Maximum torque moment Thread engagement length Min/max	ber	I _{IG} [mm n [m	-		- 30 m 00 mr	m		10/25		0 n _{ef} + 2		/32	20/40
hole in the fixture Maximum torque moment Thread engagement length Min/max Minimum thickness of memb Minimum spacing Minimum edge distance	ber	l _{IG} [h _{min} S _{min}		- m] m]	h _{ef} +	- 30 m	m		10/25 80 80		n _{ef} + 2	2d ₀ 12	20	20/40 150 150

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete

Intended Use

Installation parameters

Annex B 2

2			8		****	-						
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA	d Brusi		d _{b,min} min. Brush - Ø	Piston plug		n directior piston plu			
(mm)	(mm)	(mm)	(mm)		(mm)	(mm)		Ŧ	-	1		
M8			10	RBT10	12	10,5			-			
M10	8	IG-M6	12	RBT12		12,5			2	1.1		
M12	10	IG-M8	14	RBT14		14,5	•		2-11	1.		
	12	· · · · · · · · · · · · · · · · · · ·	16	RBT16		16,5	÷			-		
M16	14	IG-M10	18	RBT18		18,5	VS18					
	16		20	RBT20		20,5	VS20					
M20	20	IG-M12	24	RBT24		24,5	VS24	h	h			
M24		IG-M16	28	RBT28	30	28,5	VS28	$-h_{ef}>$	h _{ef} >	all		
1111-1								250 mm	250 mm			
M27	25		32	RBT32	34	32,5	VS32	250 1111				
	25 28	IG-M20	32 35	RBT32 RBT35		32,5 35,5	VS32 VS35					
M27		IG-M20			37							
M27 M30	28 32		35 40	RBT35	37 41,5	35,5 40,5	VS35 VS40					
M27 M30 MAC - Ha	28 32 and pump meter (d ₀) lepth (h ₀):	5 (volume 7 : 10 mm to 20 < 10 d _{nom}	35 40	RBT35	37 41,5	35,5	VS35 VS40	d air tool ()		
M27 M30 MAC - Ha Drill bit dia Drill hole d	28 32 and pump meter (d ₀) lepth (h ₀):	5 (volume 7 : 10 mm to 20 < 10 d _{nom}	35 40	RBT35	37 41,5	35,5 40,5	VS35 VS40	d air tool ()]		
M27 M30 MAC - Ha Drill bit dia Drill hole d Only in not	28 32 and pump meter (d ₀) lepth (h ₀): n-cracked	5 (volume 7 : 10 mm to 20 < 10 d _{nom}	35 40	RBT35	37 41,5 CAC Drill b	35,5 40,5	VS35 VS40	d air tool (ameters		_		

Drilling of the b	ore hole	
	Drill with hammer drill a hole into the base material to the size and required by the selected anchor (Table B1, B2, or B3), with hammer or compressed air (CD) drilling. The use of a hollow drill bit is only sufficient vacuum permitted. In case of aborted drill hole: the drill hole shall be filled with mortar	er (HD), hollow (HDB) in combination with a
19.54	Attention! Standing water in the bore hole must be removed befo	re cleaning.
AC: Cleaning f	for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncl	acked concrete only!
	Starting from the bottom or back of the bore hole, blow the hole cle (Annex B 3) a minimum of four times.	ean by a hand pump ¹⁾
	Check brush diameter (Table B4). Brush the hole with an appropria d _{b,min} (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush exte	
1	Finally blow the hole clean again with a hand pump (Annex B 3) a	minimum of four times
4x	¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an em 10d _{nom} also in cracked concrete with hand-pump.	bedment depth up to
AC: Cleaning f	or all bore hole diameter in uncracked and cracked concrete	
10	 Starting from the bottom or back of the bore hole, blow the hole clear compressed air (min. 6 bar) (Annex B 3) a minimum of four times a stream is free of noticeable dust. If the bore hole ground is not read extension must be used. 	until return air
	Check brush diameter (Table B4). Brush the hole with an appropria d _{b,min} (Table B4) a minimum of four times. If the bore hole ground is not reached with the brush, a brush extended with the brush and brush extended with the brush extended with the brush and brush extended with the brush and brush extended with the brush and brush extended with the brush extended with th	
	 Finally blow the hole clean again with compressed air (min. 6 bar) minimum of four times until return air stream is free of noticeable d ground is not reached an extension must be used. 	
	After cleaning, the bore hole has to be protected against re-co an appropriate way, until dispensing the mortar in the bore hol the cleaning has to be repeated directly before dispensing the In-flowing water must not contaminate the bore hole again.	e. If necessary,
Scell-IT Injecti	ion system X-PRO, X-PRO Nordic for concrete	0.000
ntended Use		Annex B 4

Installation ins	tructions (continuation)	
	 Attach the supplied static-mixing nozzle to the cartridge and load t correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended work B6) as well as for new cartridges, a new static-mixer shall be used 	king time (Table B5 or
her .	Prior to inserting the anchor rod into the filled bore hole, the position depth shall be marked on the anchor rods.	on of the embedment
min. 3 full struke	5. Prior to dispensing into the anchor hole, squeeze out separately a strokes and discard non-uniformly mixed adhesive components un consistent grey colour. For foil tube cartridges it must be discarded strokes.	til the mortar shows a
-0	6 Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static hole fills to avoid creating air pockets. For embedment larger than nozzle shall be used. Observe the gel-/ working times given in Tab	mixing nozzle as the 190 mm an extension
	 Piston Plugs and mixer nozzle extensions shall be used according following applications: Horizontal assembly (horizontal direction) and ground erection direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 2 Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ 	n (vertical downwards 250mm
	B Push the threaded rod or reinforcing bar into the anchor hole while ensure positive distribution of the adhesive until the embedment de	epth is reached.
	The anchor shall be free of dirt, grease, oil or other foreign materia	l.
	9. Be sure that the anchor is fully seated at the bottom of the hole an visible at the top of the hole. If these requirements are not maintai to be renewed. For overhead application the anchor rod shall be fi	ned, the application has
+20°C	10. Allow the adhesive to cure to the specified time prior to applying a not move or load the anchor until it is fully cured (attend Table B5	
-1	After full curing, the add-on part can be installed with up to the ma (Table B1 or B3) by using a calibrated torque wrench. It can be op gap between anchor and fixture with mortar. Therefor substitute th washer and connect the mixer reduction nozzle to the tip of the mi filled with mortar, when mortar oozes out of the washer.	tional filled the annular washer by the filling
Scell-IT Injection	n system X-PRO, X-PRO Nordic for concrete	
Intended Use		Annex B 5

Installation instructions (continuation)

+ 20 °C + 30 °C		+4°C +9°C -19°C	45 min 25 min	7 h
+ 10 °C + 20 °C + 30 °C	to +		25 min	
+ 20 °C + 30 °C		-19°C		2 h
+ 30 °C	to +		15 min	80 min
		-29°C	6 min	45 min
	to +	-34°C	4 min	25 min
+ 35 °C	to +	-39°C	2 min	20 min
+	-40°C		1,5 min	15 min
Cartridge	e temperat	ure	+5°C to	+40°C
Concrete	temperat	ure	Gelling- / working time	Minimum curing time
		4°C	10 min	2,5 h
		9°C	6 min	80 Min
		7.02.0		
				+10°C
Concrete	X-PR temperat	O Nordic ure	king time and minimum curing Gelling- / working time	Minimum curing in dry concre
Cartridge	0 °C temperatu crete the c		6 min -20°C to lust be doubled.	60 Min +10°C

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods Size M 8 M 10 M 12 M 16 M 20 M24 M 27 M 30 Characteristic tension resistance, Steel failure Steel, Property class 4.6 and 4.8 224 N_{Rk.s} [kN] 15 23 34 63 98 141 184 29 42 122 Steel, Property class 5.6 and 5.8 N_{Rk.s} [kN] 18 78 176 230 280 Steel, Property class 8.8 N_{Rk,s} [kN] 29 46 67 125 196 282 368 449 Stainless steel A2, A4 and HCR, Property class 50 [kN] 18 29 42 79 123 177 230 281 N_{Rk.s} Stainless steel A2, A4 and HCR, Property class 70 N_{Rk.s} [kN] 26 41 59 110 171 247 _ _ Stainless steel A4 and HCR, Property class 80 29 46 126 196 282 N_{Rk,s} [kN] 67 _ Characteristic tension resistance, Partial factor Steel, Property class 4.6 2,0 γMs,N [-] Steel, Property class 4.8 1.5 [-] γMs,N Steel, Property class 5.6 γMs.N [-] 2,0 Steel, Property class 5.8 [-] 1,5 γMs,N Steel, Property class 8.8 γMs,N [-] 1,5 Stainless steel A2, A4 and HCR, Property class 50 [-] 2,86 γMs.N Stainless steel A2, A4 and HCR, Property class 70 [-] 1.87 γ_{Ms} N Stainless steel A4 and HCR, Property class 80 [-] 1,6 γMs,N Characteristic shear resistance, Steel failure V⁰_{Rk,s} Steel, Property class 4.6 and 4.8 [kN] 9 14 20 38 59 85 110 135 V⁰_{Rk,s} arm Steel, Property class 5.6 and 5.8 [kN] 9 15 21 39 61 88 115 140 Without lever Steel, Property class 8.8 V⁰_{Rk,s} [kN] 15 23 34 63 98 141 184 224 V⁰_{Rk,s} Stainless steel A2, A4 and HCR, Property class 50 [kN] 9 15 21 39 61 88 115 140 V⁰_{Rk,s} Stainless steel A2, A4 and HCR, Property class 70 [kN] 13 20 30 55 86 124 _ _ Stainless steel A4 and HCR, Property class 80 V⁰_{Rk,s} [kN] 15 23 34 63 98 141 -Steel, Property class 4.6 and 4.8 M⁰_{Bk.s} [Nm] 15 30 52 133 260 449 666 900 M⁰_{Rk,s} 833 Steel, Property class 5.6 and 5.8 [Nm] 19 37 1123 65 166 324 560 arm 30 105 1797 Steel, Property class 8.8 M⁰_{Rk,s} [Nm] 60 266 519 896 1333 lever Stainless steel A2, A4 and HCR, Property class 50 M⁰_{Rk,s} 19 37 [Nm] 66 167 325 561 832 1125 With I M⁰_{Bk.s} Stainless steel A2, A4 and HCR, Property class 70 [Nm] 26 52 92 232 454 784 _ Stainless steel A4 and HCR, Property class 80 M⁰_{Rk.s} 30 59 105 519 [Nm] 266 896 --Characteristic shear resistance, Partial factor Steel, Property class 4.6 1,67 γMs,V [-] Steel, Property class 4.8 1.25 γMs.V [-] Steel, Property class 5.6 1,67 γMs.V [-] Steel, Property class 5.8 [-] 1,25 γMs,V 1) 1,25 Steel, Property class 8.8 γMs,V [-] Stainless steel A2, A4 and HCR, Property class 50 [-] 2,38 γMs.V Stainless steel A2, A4 and HCR, Property class 70 1.56 γMs.V [-] Stainless steel A4 and HCR, Property class 80 [-] 1,33 γMs,V

¹⁾ in absence of national regulation

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Anchor size threaded	rod			M 8	M 10	M 12	M 16	M 20	M24	M27	M30
Steel failure											
Characteristic tension re	olictorico	N _{Rk,s}	[kN]				see Ta	ble C1			
	SISIAIICE	N _{Rk,s, eq}									
Partial factor		γms,N	[-]				see Ta	ble C1			
Combined pull-out and	l concrete failure										
Characteristic bond resi	stance in non-cracked co	ncrete C20/25									
Temperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	10	12	12	12	12	11	10	9
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5	No Perf	ormance	Determine	d (NPD)
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
80°C/50°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5			Determine	<u>, </u>
Temperature range III:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
120°C/72°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	4,0	5,0	5,0	5,0	No Perf	ormance	Determine	d (NPD)
Characteristic bond resi	stance in cracked concre	te C20/25			1						
_	dry and wet concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I: 40°C/24°C		τ _{Rk,eq}	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
40 0/24 0	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	4,0	4,0	5,5	5,5			Determine	. ,
		τ _{Rk,eq}	[N/mm ²]	2,5 2,5	2,5 3,5	3,7 4,0	3,7 4,0	4,0		Determine 4,5	4,5
Temperature range II:	dry and wet concrete	τ _{Rk,cr} τ _{Rk,eq}	[N/mm ²]	2,5	2,2	2,7	2,7	2,7	4,0 2.8	3,1	4,5
80°C/50°C	Ċ/50°C		[N/mm ²]	2,5	3,0	4,0	4,0		, -	- /	,
flooded bore hole		τ _{Rk,cr} τ _{Rk,eq}	[N/mm ²]	2,5 3,0 4,0 4,0 No Performance Determined (NF 1,6 1,9 2,7 2,7 No Performance Determined (NF							
		τ _{Rk.cr}	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III:	dry and wet concrete	τ _{Rk,eq}	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C	flee de diberre biele	τ _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3,0	No Perf	ormance	Determine	d (NPD)
	flooded bore hole	$\tau_{\rm Rk,eq}$	[N/mm ²]	1,3	1,6	2,0	2,0	No Perf	ormance	Determine	d (NPD)
	•	C25	5/30				1,	02			
		C30)/37				1,	04			
Increasing factors for co (only static or quasi-stat		C35	5/45				1,	07			
ψ_c		C40		1,08							
		C45					1,				
• • • • • •		C50)/60				1,	10			
Concrete cone failure											
Non-cracked concrete		k _{ucr,N}	[-]					,0			
Cracked concrete		k _{cr,N}	[-]				7	,7			
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]				2 0	cr,N			
Splitting											
	h/h _{ef} ≥ 2,0						1,0	h _{ef}			
Edge distance	2,0> h/h _{et} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{ef}\left(2,5-\frac{h}{h_{ef}}\right)$							
	h/h _{ef} ≤ 1,3						2,4	h _{ef}			
Axial distance		S _{cr,sp}	[mm]				2 c	cr sp			
Installation factor (dry and wet concrete)		γinst	[-]	1,0				1,2			

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete

Performances

Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1) $\,$

Table C3: Characteristic valu seismic action (per					tatic, d	quasi-	static	action	and		
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm											
	V ⁰ _{Rk,s}	[kN]	see Table C1								
Characteristic shear resistance	V _{Rk,s,eq}	[kN]				0,70 ·	V ⁰ _{Rk,s}				
Partial factor	γms,v	[-]	see Table C1								
Ductility factor	k ₇	[-]				1,	,0				
Steel failure with lever arm											
	[Nm]				see Ta	ble C1					
Characteristic bending moment	M ⁰ _{Rk,s, eq}	[Nm]			No Perfo	ormance [Determine	d (NPD)			
Partial factor	γ̃Ms,∨	[-]				see Ta	ble C1				
Concrete pry-out failure											
Factor	k ₈	[-]				2	,0				
Installation factor	γinst	[-]				1,	,0				
Concrete edge failure											
Effective length of fastener	l _f	[mm]				l _f = min(h	_{ef} ; 8 d _{nom})				
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation factor	γinst	[-]				1,	,0				
Factor for annular gap	α_{gap}	[-]	0,5 (1,0) ¹⁾								
¹⁾ Value in brackets valid for filled annular gab between	anchor and cl	earance ho	ble in the fix	kture. Use c	f special fil	ling washe	r Annex A (3 is require	d		
Scell-IT Injection system X-PRO,	X-PRO N	ordic	for cor	ncrete							

Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Anchor size internal tl	hreaded anchor rods			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure ¹⁾									
Characteristic tension re		N _{Rk,s}	[kN]	10	17	29	42	76	123
Steel, strength class 5.8	3						.5		.20
Partial factor Characteristic tension re	esistance	γMs,N	[-]				, _		
Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor		γMs,N	[-]			1	,5		
Characteristic tension re		N _{Rk.s}	[kN]	14	26	41	59	110	124
Stainless Steel A4, Stre Partial factor	ength class 70					1.07			0.96
	d concrete cone failure	ΎMs,N	[-]			1,87			2,86
•	istance in non-cracked concre	ato C20/25							
	dry and wet concrete		[N/mm ²]	12	12	12	12	11	9
Temperature range I: 40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	8,5	8,5	8,5		ance Determ	-
	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	9	9	9	9	8,5	6.5
Temperature range II: 80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	6,5	6,5	6,5	-	ance Determ	,
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5	6,5	6,5	5.0
120°C/72°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,0	5,0	5,0		ance Determ	- / -
Characteristic bond resi	istance in cracked concrete C		[]	0,0	0,0	0,0			
Temperature range I:	dry and wet concrete	τ _{Rk.cr}	[N/mm ²]	5,0	5,5	5,5	5,5	5,5	6,5
40°C/24°C	flooded bore hole	τ _{Rk.cr}	[N/mm ²]	4,0	5,5	5,5	- , -	ance Determ	- , -
Temperature range II:	dry and wet concrete	τ _{Rk.cr}	[N/mm ²]	3,5	4,0	4,0	4,0	4,0	4,5
80°C/50°C	flooded bore hole	τ _{Rk.cr}	[N/mm ²]	3,0	4,0	4,0	No Perform	ance Determ	ined (NPD
Temperature range III:	dry and wet concrete	τ _{Rk.cr}	[N/mm ²]	2,5	3,0	3,0	3,0	3,0	3,5
120°C/72°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]	2,5	3,0	3,0	No Perform	ance Determ	ined (NPD
		C	25/30			1,	02		
		C	30/37			1,	04		
Increasing factors for co	oncrete	C	35/45			1,	07		
Ψc		C4	40/50			1,	08		
			45/55			1,	09		
		C	50/60			1,	10		
Concrete cone failure									
Non-cracked concrete		k _{ucr,N}	[-]				,0		
Cracked concrete		k _{cr,N}	[-]				,7		
Edge distance		C _{cr,N}	[mm]				i h _{ef}		
Axial distance		S _{cr,N}	[mm]			20	cr,N		
Splitting failure									
	h/h _{ef} ≥ 2,0					1,0	h _{ef}		
	0.0 1/4 1.0		[mm]			2 4 2	_ h)		
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]			$2 \cdot h_{ef} = 2$	$5-\frac{h}{h_{ef}}$		
	h/h _{ef} ≤ 1,3	_				24	h _{ef}		
A . ! . . !			[]			,			
Axial distance		S _{cr,sp}	[mm]				cr,sp		
Installation factor (dry a	nd wet concrete)	γ inst	[-]			1	,2		
Installation factor (flood	ed bore hole)	γinst	[-]		1,4			-	
threaded roc and the faste	crews or threaded rods (incl. r d. The characteristic tension r ening element. strength class 50 is valid								
Scell-IT Injectio	on system X-PRO, X-	PRO Nor	dic for c	oncrete	•				
							\dashv	Annex (م ۲

Anchor size for internal threaded anche	or rods		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm ¹⁾						1		L
Characteristic shear resistance, Steel, strength class 5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Partial factor	γ _{Ms,V}	[-]			1,	25		I
Characteristic shear resistance, Steel, strength class 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor	γ̃Ms,∨	[-]			1,	25		
Characteristic shear resistance, Stainless Steel A4, Strength class 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor	γ _{Ms,V}	[-]			1,56		1	2,38
Ductility factor	k ₇	[-]			1	,0		
Steel failure with lever arm ¹⁾								
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Partial factor	γ _{Ms.V}	[-]			1,	25		
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor	γ _{Ms,V}	[-]			1,	25	1	I
Characteristic bending moment, Stainless Steel A4, Strength class 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor	γ _{Ms,V}	[-]			1,56	1		2,38
Concrete pry-out failure								L
actor	k ₈	[-]			2	,0		
Installation factor	γinst	[-]			1	,0		
Concrete edge failure								
Effective length of fastener	l _t	[mm]			l _t = min(h	n _{ef} ; 8 d _{nom})		
Outside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30
nstallation factor	γinst	[-]			1	,0		
 Fastening screws or threaded threaded rod. The characterist and the fastening element. ²⁾ For IG-M20 strength class 50 is 	ic tension res	t and washer	r) must comp teel failure of	iy with the ap the given str	propriate mate	erial and prop e valid for the	erty class of t	he internal aded rod
Scell-IT Injection system X-	PRO, X-F	PRO Nord	lic for co	ncrete			Annex	

Anchor size reinforcin	g bar				egory Ø8	ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure	-												
Characteristic tension r	alatanaa		N _{Rk.s}	[kN]					$A_s \cdot f_{uk}^{1}$				
Characteristic tension re	esistance		N _{Rk,s, eq}	[kN]				1,	0 ∙ A _s ∙ f	1) uk			
Cross section area			As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor			γMs.N	[-]					1,4 ²⁾				
Combined pull-out and	d concrete fa	ilure											
Characteristic bond resi	stance in non	-cracked co	ncrete C20	/25			_		_				
Temperature range I:	dry and wet	concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore		$\tau_{\text{Rk,ucr}}$	[N/mm ²]	7,5	8,5	8,5	8,5	8,5			Determine	<u>,</u>
Temperature range II:	dry and wet		$\tau_{Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore		$\tau_{\text{Rk,ucr}}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5			Determine	· ·
Temperature range III:	dry and wet		$\tau_{\text{Rk,ucr}}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore		τ _{Rk,ucr}	[N/mm²]	4,0	5,0	5,0	5,0	5,0	No Perf	ormance	Determine	d (NPE
Characteristic bond resi	stance in crac	cked concre	te C20/25	Ih 1/ 0]	1.0	5.0						0.5	0.5
	dry and wet	concrete	$\tau_{Rk,cr}$	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I: 40°C/24°C			$\tau_{Rk,eq}$	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
40 0/24 0	flooded bore	e hole	τ _{Rk,cr}	[N/mm ²]	4,0	4,0	5,5 3,7	5,5 3,7	5,5 3,7			Determine	
			τ _{Rk,eq}	[N/mm ²] [N/mm ²]	2,5 2,5	2,5 3,5	4,0	4,0	4,0	4,0	4,0	Determine 4,5	4,5
T !!.	dry and wet	concrete	τ _{Rk,cr}	[N/mm ²]	2,5	2,2	2,7	2,7	2,7	2.7	2,8	4,5	4,5
Temperature range II: 80°C/50°C			τ _{Rk,eq}	[N/mm ²]	2,5	3,0	4,0	4,0	4,0	,.	,	Determine	,
	flooded bore	e hole	τ _{Rk,cr}	[N/mm ²]	1,6	1,9	2,7	2,7	2,7			Determine	· ·
			τ _{Rk,eq}	[N/mm ²]	2,0	2,5	3.0	3.0	3.0	3,0	3,0	3,5	3,5
Temperature range III:	dry and wet	concrete	τ _{Rk,cr}	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2.4
120°C/72°C			τ _{Rk,eq} τ _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3.0	3.0	,	,	Determine	, .
	flooded bore	e hole	τ _{Rk,eq}	[N/mm ²]	1.3	1.6	2.0	2,0	2.0			Determine	`
				5/30	.,_	.,.	_,_	_,_	1,02				
			C30)/37					1,04				
Increasing factors for co			C35	5/45					1,07				
(only static or quasi-stat Ψ_{c}	ic actions)		C40	0/50					1,08				
Ψ¢			C45	5/55					1,09				
			C50	0/60					1,10				
Concrete cone failure													
Non-cracked concrete			k _{ucr,N}	[-]					11,0				
Cracked concrete			k _{cr,N}	[-]					7,7				
Edge distance			C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance			S _{cr,N}	[mm]					2 c _{cr.N}				
Splitting			Ocr,N	[]									
opinting	h/h _{ef} ≥ 2,0								1,0 h _{ef}				
	$\Pi/\Pi_{ef} \simeq 2.0$		-						1,0 Het	<u> </u>			
Edge distance	2,0> h/h _{ef} >	1.3	C _{cr,sp}	[mm]				$2 \cdot h$	(2.5 -	<u>h</u>			
	,	.,•	-ci,sp	[]						\mathbf{h}{ef}			
	h/h _{ef} ≤ 1,3								2,4 h _{ef}				
Axial distance			S _{cr.sp}	[mm]					2 c _{cr,sp}				
Installation factor (dry a	nd wet concre	ate)		[-]	1,0					,2			
Installation factor (flood			γinst γinst	[-]	1,0		1,4			<u></u>	ormance	Determine	d (NPI
¹⁾ f _{uk} shall be tak ²⁾ in absence of	en from the national reg	specificati julation	ons of rein		irs		.,.						
Scell-IT Injectio	n system	X-PRO	X-PRO	Nordic	for co	ncrete)						
Performances Characteristic values	s of tension ormance cat		er static, q	uasi-static	action a	and]	Anno	ex C 6	6

Table C7: Characteristic value seismic action (perf					atic,	quas	i-stat	ic act	tion a	nd	
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]				0,5	0 • A _s • 1	r 1) uk			
	$V_{Rk,s,eq}$	[kN]				0,3	$5 \cdot A_{s} \cdot f$	r 1) uk			
Cross section area	As	[mm²]	50	79	113	154	201	214	491	616	804
Partial factor	γms,v	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	• W _{el} • f	: 1) uk			
Characteristic bending moment	M ⁰ _{Rk,s, eq}	[Nm]			Νο Ρε	erforman	ce Dete	rmined (NPD)		
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γms,v	[-]					1,5 ²⁾				
Concrete pry-out failure											
Factor	κ ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of fastener	lf	[mm]				l _f = m	in(h _{ef} ; 8	d _{nom})			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]					1,0				
Factor for annular gap	α_{gap}	[-]				C),5 (1,0) ¹)			
 ¹⁾ f_{uk} shall be taken from the specifications of reinfor ²⁾ in absence of national regulation ³⁾ Value in brackets valid for filled annular gab between the second se		earance h	ole in the	fixture. L	lse of spe	ecial filling	g washer	Annex A	3 is requ	ired	

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Table C8: Di	splaceme	nts under tensio	n load ¹⁾	(threa	nded ro	od)				
Anchor size thread	led rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25		•							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,0)90			0,0)70		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,1	05			0,1	05		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219			0,1	70		
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255			0,2	245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219			0,1	70		
120°C/72°Č	$\delta_{N\infty}\text{-}factor$	[mm/(N/mm ²)]	0,2	255			0,2	245		

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \cdot \tau;$

Table C9: Displacements under shear load¹⁾ (threaded rod)

Anchor size thre	eaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked	l concrete C2	0/25								
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}\text{-}factor$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked con	crete C20/25									
All temperature	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10
$\delta_{V\infty} = \delta_{V\infty}$ -facto	or ∙V;									
Scell-IT Injection system X-PRO, X-PRO Nordic for concrete Performances Displacements (threaded rods)									nex C	0

Anchor size reinf	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked con	crete C20/2	25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,07
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,12
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,12
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18 ⁻
Cracked concrete	e C20/25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,0)90				0,070			
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,1	05				0,105			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219				0,170			
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255				0,245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0.2	219				0,170			
	ONO IGOLOI		0,1	13				0,170			
120°C/72°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]		255				0,245			
¹ 20°C/72°Ć ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor	$\delta_{N\infty}$ -factor ne displacen $\cdot \tau$; $\cdot \cdot \tau$;	[mm/(N/mm ²)]	0,2	255 or tension				,			
¹ 20°C/72°Ć ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C11: D	δ _{N∞} -factor ne displacen · τ; · · τ;	[mm/(N/mm²)] nent τ: action bond	0,2	255 or tension		Ø 14	Ø 16	,	Ø 25	Ø 28	Ø 32
¹ 20°C/72°Ć ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor	$δ_{N\infty}$ -factor he displacen $\cdot \tau;$ $\cdot \tau;$ hisplacen orcing bar	[mm/(N/mm²)] nent τ: action bond	0,2 I stress fo hear lo	255 or tension oad ¹⁾ (r	ebar)	Ø 14	Ø 16	0,245	Ø 25	Ø 28	Ø 32
120°C/72°Ć ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C11: D Anchor size reinfo	$δ_{N\infty}$ -factor he displacen $\cdot \tau;$ $\cdot \tau;$ hisplacen orcing bar	[mm/(N/mm²)] nent τ: action bond	0,2 I stress fo hear lo	255 or tension oad ¹⁾ (r	ebar)	Ø 14 0,04	Ø 16	0,245	Ø 25 0,03	Ø 28	Ø 3 2 0,03
120°C/72°Č ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C11: D Anchor size reinfor Non-cracked contended All temperature	$δ_{N∞}$ -factor ne displacen τ; r ; r ; r ; r ; r ; r ; r ; r ;	[mm/(N/mm ²)] nent τ: action bond	0,2 I stress fo hear lo Ø 8	255 or tension oad ¹⁾ (r Ø 10	ebar) Ø 12			0,245 Ø 20			0,03
120°C/72°Ć ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C11: D Anchor size reinfor Non-cracked cone	$\frac{\delta_{N\infty}\text{-factor}}{\epsilon}$ $\frac{\delta_{N\infty}\text{-factor}}{\epsilon}$ $\frac{\tau;}{\tau;}$ $\frac{\text{isplacen}}{\epsilon}$ $\frac{\delta_{V0}\text{-factor}}{\delta_{V\infty}\text{-factor}}$	[mm/(N/mm ²)] nent τ: action bonc nent under s 25 [mm/(kN)]	0,2 I stress fo hear lo Ø 8 0,06	255 or tension oad ¹⁾ (r Ø 10 0,05	ebar) Ø 12 0,05	0,04	0,04	0,245 Ø 20	0,03	0,03	
120°C/72°Ć ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C11: D Anchor size reinfor Non-cracked cono All temperature ranges	$\frac{\delta_{N\infty}\text{-factor}}{\epsilon}$ $\frac{\delta_{N\infty}\text{-factor}}{\epsilon}$ $\frac{\tau;}{\tau;}$ $\frac{\text{isplacen}}{\epsilon}$ $\frac{\delta_{V0}\text{-factor}}{\delta_{V\infty}\text{-factor}}$	[mm/(N/mm ²)] nent τ: action bonc nent under s 25 [mm/(kN)]	0,2 I stress fo hear lo Ø 8 0,06	255 or tension oad ¹⁾ (r Ø 10 0,05	ebar) Ø 12 0,05	0,04	0,04	0,245 Ø 20	0,03	0,03	0,03

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor $\cdot V$;

Scell-IT Injection system X-PRO, X-PRO Nordic for concrete

Performances Displacements (rebar)

Anchor size Interr	nal threaded	anchor rod	IG-N	/16 IG-N	18 IG	- M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked concre	ete C20/25 und	er static and quasi	-static actio	on	I				1
Temperature range I:	δ_{N0} -factor	[mm/(N/mm	⁽²⁾] 0,02	23 0,02	26 0	,031	0,036	0,041	0,049
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm	/-			,045	0,052	0,060	0,071
Temperature range II:	δ _{N0} -factor	[mm/(N/mm	/2 .			,075	0,088	0,100	0,119
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm	^{[2})] 0,08	81 0,09	90 0	,108	0,127	0,145	0,172
Temperature range III:		[mm/(N/mm	^{[2})] 0,0	56 0,00	63 0	,075	0,088	0,100	0,119
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm	⁽²⁾] 0,0	81 0,09	90 0	,108	0,127	0,145	0,172
Cracked concrete C	20/25 under st	atic and quasi-stat	ic action						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm	²)] 0,0	90			0,070		
40°C/24°C	$\delta_{\text{N}\infty}\text{-factor}$	[mm/(N/mm	²)] 0,1	05			0,105		
Temperature range II:	$\delta_{\text{N0}}\text{-}\text{factor}$	[mm/(N/mm	²)] 0,2	19			0,170		
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm	²)] 0,2	55			0,245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm	²)] 0,2	19			0,170		
120°C/72°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm	²)] 0,2	55			0,245		
$\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor									
δ _{N∞} = δ _{N∞} -factor Table C13: D	isplacemer	nts under shea			1			-	10 M 20
$\delta_{N\infty} = \delta_{N\infty}$ -factor Table C13: D Anchor size Interr	isplacemer	anchor rod	IG-M 6	IG-M 8	IG-M 1	0 1	nchor re G-M 12	D d) IG-M 16	IG-M 20
$\delta_{N\infty} = \delta_{N\infty}$ -factor Table C13: D Anchor size Intern Non-cracked and	isplacement nal threaded cracked cond	anchor rod crete C20/25 unde	IG-M 6 er static a	IG-M 8 nd quasi-s	IG-M 1	0 1	G-M 12	IG-M 16	
$\delta_{N\infty} = \delta_{N\infty}$ -factor Table C13: D Anchor size Intern Non-cracked and All temperature	isplacemer	anchor rod crete C20/25 unde	IG-M 6 er static a 0,07	IG-M 8 Id quasi-s 0,06	IG-M 1 static act 0,06	0 1	G-M 12 0,05	IG-M 16 0,04	0,04
$\delta_{N\infty} = \delta_{N\infty}$ -factor Table C13: D Anchor size Intern Non-cracked and All temperature ranges ¹⁾ Calculation of th $\delta_{V0} = \delta_{V0}$ -factor	isplacement nal threaded cracked cone δ _{vo} -factor δ _{v∞} -factor e displacement · V;	anchor rod crete C20/25 unde [mm/(kN)] [mm/(kN)]	IG-M 6 er static an 0,07 0,10	IG-M 8 nd quasi-s	IG-M 1	0 1	G-M 12	IG-M 16	
$\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor Table C13: D Anchor size Intern Non-cracked and All temperature ranges ¹⁾ Calculation of th	isplacement nal threaded cracked cone δ _{vo} -factor δ _{v∞} -factor e displacement · V;	anchor rod crete C20/25 unde [mm/(kN)] [mm/(kN)]	IG-M 6 er static an 0,07 0,10	IG-M 8 Id quasi-s 0,06	IG-M 1 static act 0,06	0 1	G-M 12 0,05	IG-M 16 0,04	0,04

EUROPEAN TECHNICAL ASSESSMENT

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of ETA-10/0256 of 11 December 2014

Deutsches Institut für Bautechnik

SCELL-IT Injection system X-PRO for rebar connection

Post-installed rebar connection with SCELL-IT injection System X-PRO

SCELL-IT 28 Rue Paul Dubrule 59854 LESQUIN FRANKREICH

SCELL-IT, Plant1 Germany

15 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik

Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

Page 2 of the European Technical Assessment ETA-10/0256 of 11 December 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of the European Technical Assessment ETA-10/0256 of 11 December 2014

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Scell-It Injection System X-PRO for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 25 mm and injection mortar X-PRO are used for rebar connections. The reinforcing bar is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded element, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Design values of the ultimate bond resistance	See Annex C 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Rebar connections satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5) Not applicable.

Z89051.14

Page 4 of the European Technical Assessment ETA-10/0256 of 11 December 2014

3.6 Energy economy and heat retention (BWR 6) Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

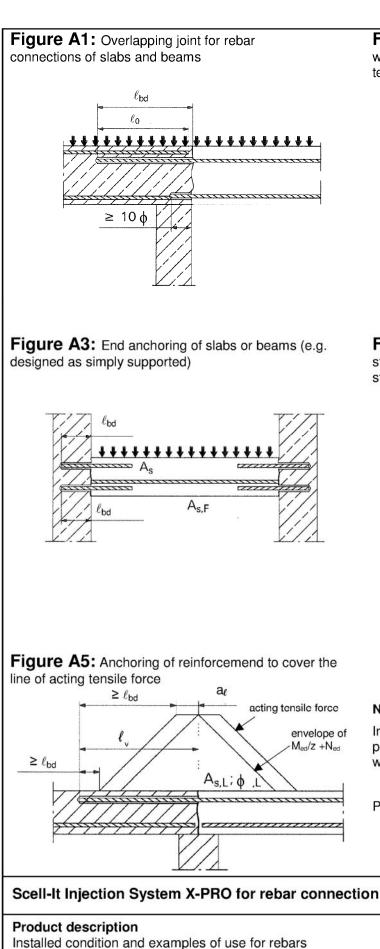
The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

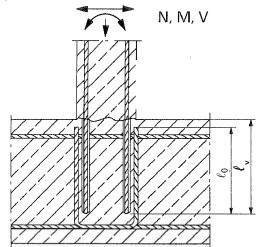
According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Dcoument


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 11 December 2014 by Deutsches Institut für Bautechnik


Uwe Bender Head of Department

beglaubigt: Baderschneider

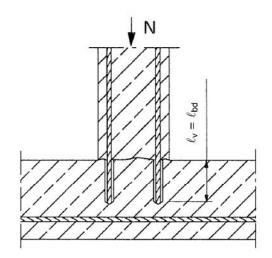


Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

Figure A4: Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression

Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

Preparing of joints according to Annex B 2

Annex A 1

Z89061.14

Page 6 of European Technical Assessment ETA-10/0256 of 11 December 2014

Scell-It Injection System X-PRO:		
Injection mortar: X-PRO Typ "coaxial": 150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml Kartusche	hazard-code	otes, charge-code, shelf life, , curing- and processing time on the temperature), with as well as
Type "side-by-side": 235 ml, 345 ml and 825 ml cartridge	hazard-code	otes, charge-code, shelf life, , curing- and processing time on the temperature), with as well as
Static Mixer		
CRW 14W		
TAH 18W	Ĩ ^Ċ ŊŇĊŊŇĊŊŇĊŊŇĊŊŇĊŊŇ	
Piston plug and mixer extension		
Reinforcing bar (rebar): ø8, ø10), ø12, ø14, ø16, ø20, ø22, ø24, ø	ø25
 Minimum value of related rip area f_{R,min} Rib height of the bar shall be in the ran (φ: Nominal diameter of the bar; h: Rip Table A1: Materials 		10
Designation	Material	
Rebar EN 1992-1-1:2004+AC:2010, Annex	$\begin{array}{l} \text{Bars and de-coiled rods clas} \\ \text{f}_{yk} \text{ and } k \text{ according to NDP o} \\ \text{f}_{uk} = \text{f}_{tk} = \text{k} \cdot \text{f}_{yk} \end{array}$	s B or C r NCL of EN 1992-1-1/NA:2013
Scell-It Injection System X-PRO for	rebar connection	
Product description Injection mortar / Static mixer / Rebar Materials		Annex A 2

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C50/60 according to EN 206-1:2000.
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206-1:2000.
- · Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

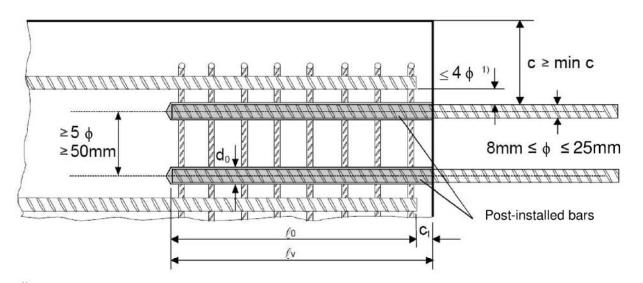
Temperature Range:

• - 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010 and Annex B 2.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:


- Dry or wet concrete.
- It must not be installed in flooded holes.
- Hole drilling by hammer drill or compressed air drill mode.
- The installation of post-installed rebar shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Scell-It Injection System X-PRO for rebar connection	
Intended use Specifications	Annex B 1

Figure B1: General construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

¹⁾ If the clear distance between lapped bars exceeds 4¢, then the lap length shall be increased by the difference between the clear bar distance and 4¢.

The following applies to Figure B1:

- c concrete cover of post-installed rebar
- c₁ concrete cover at end-face of existing rebar
- min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 diameter of post-installed rebar
- ℓ_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- ℓ_v effective embedment depth, $\geq \ell_0 + c_1$
- d₀ nominal drill bit diameter, see Annex B 6

Scell-It Injection System X-PRO for rebar connection

Intended use

General construction rules for post-installed rebars

Annex B 2

Table B1:	Minimum concrete cover min c ¹⁾ of
	post-installed rebar depending of
	drilling method

			Δ.	
Drilling method	Rebar diameter	Without drilling aid	With drilling aid	
Hammer drilling (HD)	< 25 mm	$30 \text{ mm} + 0,06 \cdot \ell_v \ge 2 \phi$	$30 \text{ mm} + 0,02 \cdot \ell_{v} \ge 2 \phi$	
Hammer drilling (HD)	= 25 mm	$40 \text{ mm} + 0,06 \cdot \boldsymbol{\ell}_{v} \geq 2 \phi$	$40 \text{ mm} + 0,02 \cdot \ell_{v} \ge 2 \phi$	
Compressed air drilling (CD)	< 25 mm	50 mm + 0,08 · ℓ _v	50 mm + 0,02 · ℓ _v	
Compressed air dhining (CD)	= 25 mm	60 mm + 0,08 · ℓ _v	60 mm + 0,02 · ℓ_v	

see Annexes B2, Figures B1

1)

Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed

Table B2: maximum embedment depth $\ell_{v,max}$

Rebar	0
Øφ	$\ell_{v,max}$ [mm]
8 mm	1000
10 mm	1000
12 mm	1200
14 mm	1400
16 mm	1600
20 mm	2000
22 mm	2000
24 mm	2000
25 mm	2000

Table B3: Base material temperature, gelling time and curing time

Concre	ete te	mperature	Gelling- / working time ¹⁾	Minimum curing time in dry concrete ⁵⁾		
			t _{gel}	t _{cure,dry}		
-10°C	bis	-6°C	90 min ²⁾	24 h		
-5°C	bis	-1°C	90 min ³⁾	14 h		
0°C	bis	+4°C	45 min ³⁾	7 h		
+5°C	bis	+9°C	25 min ³⁾	2 h		
+10°C	bis	+19°C	15 min ³⁾	80 min		
+20°C	bis	+24°C	6 min ³⁾	45 min		
+25°C	bis	+29°C	4 min ³⁾	25 min		
+30°C	bis	+40°C	2,5 min ⁴⁾	15 min		

 $\frac{1}{2}$ t_{gel}: maximum time from starting of mortar injection to completing of rebar setting.

²⁾ Cartridge temperature <u>must</u> be at minimum +15°C

³⁾ Cartridge temperature **must** be between +5°C and +25°C

⁴⁾ Cartridge temperature **must** be below +20°C

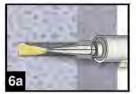
 $^{5)}$ In wet concrete the curing time $t_{\text{cure,dry}}$ has to be doubled up

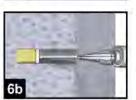
Scell-It Injection System X-PRO for rebar connection

Intended use

Minimum concrete cover Maximum embedment depth / working time and curing times Annex B 3

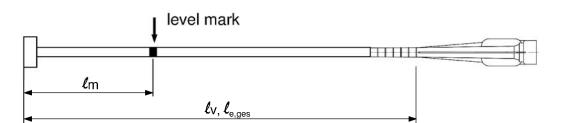
Table B4: Dispensing tools Cartridge Hand tool Pneumatic tool type/size Coaxial cartridges 150, 280, 300 up to 333 ml e.g. Type H 297 or H244C e.g. Type TS 492 X Coaxial cartridges 380 up to 420 ml e.g. Type CCM 380/10 e.g. Type H 285 or H244C e.g. Type TS 485 LX Side-by-side cartridges 235, 345 ml e.g. Type CBM 330A e.g. Type H 260 e.g. Type TS 477 LX Side-by-side cartridge 825 ml e.g. Type TS 498X All cartridges could also be extruded by a battery tool. Scell-It Injection System X-PRO for rebar connection Intended Use Annex B 4 **Dispensing tools**


A) Bore hole drilling			
selecte	hole into the base material to th ed reinforcing bar with carbide h In case of aborted drill hole: the	nammer drill (HD) or a co	mpressed air drill
		Rebar - Ø	Drill - Ø
Sector Sector T		φ	[mm]
		8 mm	12
		10 mm	14
	20200	12 mm	16
		14 mm	18
- 1		16 mm	20
	-0-	20 mm	25
	-	22 mm	28
		24 mm	32
Hammer drill (HD) C	Compressed air drill (CD)	25 mm	32
or hole gro For bord The bord	essed air (min. 6 bar) or a hand pound is not reached an extension e holes deeper then 240 mm, control of the second seco	on shall be used. ompressed air (min. 6 ba attach the brush to a drill e with an appropriate siz mes. with the brush, a brush e	ar) <u>must</u> be used. Iing machine ed wire brush extension
or used.	m of four times. If the bore hole e holes deeper than 240 mm, ca	ground is not reached a	n extension shall be
cell-It Injection System X-PRO	D for rebar connection		Annex B 5
nstallation instruction: Bore hole drilling Bore hole cleaning	and		


Brush:		L		Ū	SDS Plus Adapter:
-	-			1	
	<u> </u>		<i>Heek</i>	t I	d _b
Brush exte	ension:				
φ Rebar - Ø	d₀ Drill bit - Ø	d _b Brush - Ø	d _{b,min} min. Brush - Ø	L Total length	
(mm)	(mm)	(mm)	(mm)	(mm)	
8	12	14	12,5	170	and the second second
10	14	16	14,5	200	Hand pump (volume 750 ml)
12	16	18	16,5	200	
14	18	20	18,5	300	
16	20	22	20,5	300	
20	25	27	25,5	300	
22	28	30	28,5	300	
24	32	34	32,5	300	Rec. compressed air tool
25	32	34	32,5	300	hand slide valve (min 6 bar)
3		the corre For every (Table B Prior to in embedm bar in en	et dispensin y working in 3) as well as nserting the ent depth sh npty hole to	ig tool. terruption longe s for every new reinforcing bar hall be marked (verify hole and	zzle to the cartridge and load the cartridge into or than the recommended working time cartridges, a new static-mixer shall be used. into the filled bore hole, the position of the (e.g. with tape) on the reinforcing bar and inser depth ℓ_{v} . f dirt, grease, oil or other foreign material.
5	tion Syste	shows a uniformly	consistent g mixed adh	rey colour, but esive componer	ole, squeeze out separately the mortar until it a minimum of three full strokes, and discard no nts.
tended Use				onnection	Annex B 6

D) Filling the bore hole

Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used.



For overhead and horizontal installation and bore holes deeper than 240 mm a piston plug and the appropriate mixer extension must be used.

Observe the gel-/ working times given in Table B3.

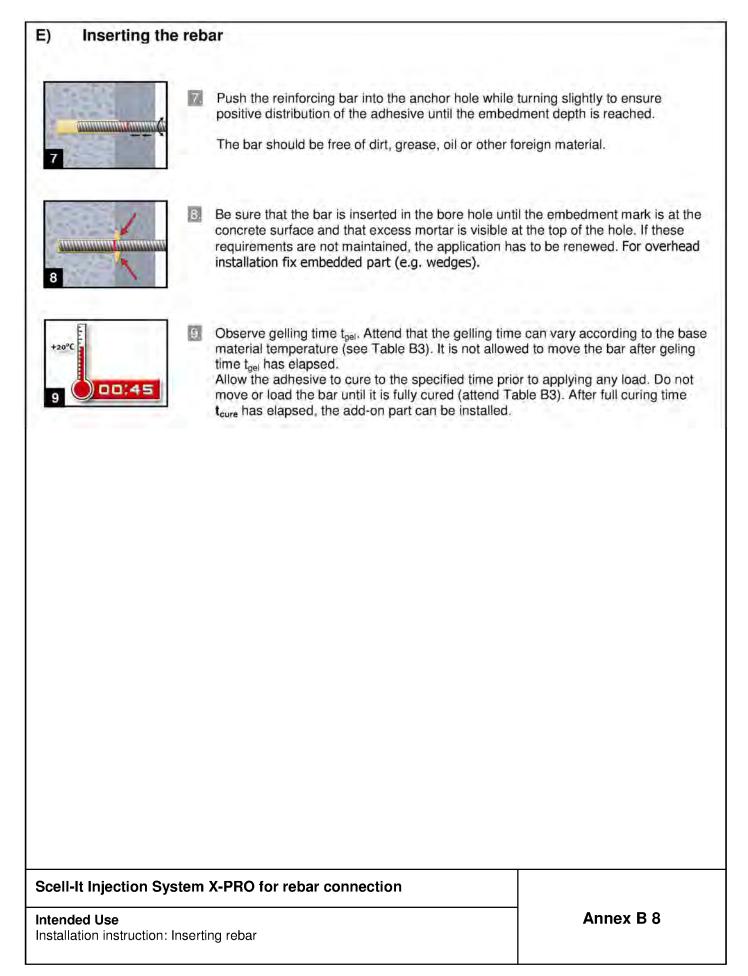
Table B6: Piston plugs, max anchorage depth and mixer extension

Drill				Cartridge: All sizes				Cartridge: side-by-side (825 ml)	
Bar size	bit	- Ø	Piston _ plug	Hand or battery tool		Pneumatic tool		Pneumatic tool	
φ			_ Picig _	I _{v,max}	Mixer extension	l _{v,max}	Mixer extension	l _{v,max}	Mixer extension
(mm)	(m	m)	No.	(cm)		(cm)		(cm)	
8	12	-	-		70	80	-	80	- VL 10/0,75
10	14	-	#14			100		100	
12	1	6	#16	70				120	
14	1	8	#18				100		140
16	2	0	#20		VL 10/0,75		VL 10/0,75	160	
20	25	26	#25			70			VL 16/1,8
22	2	8	#28	50		70		000	
24	3	2	#32	50		50		200	
25	3	2	#32			50			

Injection tool must be marked by mortar level mark ℓ_m and anchorage depth ℓ_v resp. $\ell_{e,ges}$ with tape or marker. Quick estimation: $\ell_m = 1/3 \cdot \ell_v$

Continue injection until the mortar level mark ℓ_m becomes visible.

Optimum mortar volume:
$$\ell_{\rm m} = \ell_{\rm v} \text{ resp. } \ell_{\rm e,ges} \cdot \left(1,2 \cdot \frac{\phi^2}{d_0^2} - 0,2\right) \text{ [mm]}$$


Scell-It Injection System X-PRO for rebar connection

Intended Use

Installation instruction: Filling the bore hole

Annex B 7

Minimum anchorage length and minimum lap length

The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($\ell_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $\ell_{0,min}$ acc. to Eq. 8.11) shall be multiply by a factor according to Table C1.

Table C1: Factor related to concrete class and drilling method

Concrete class	Drilling method	Factor
C12/15 to C50/60	Hammer drilling and compressed air drilling	1,0

Table C2:Design values of the ultimate bond resistance fbd in N/mm² for all
drilling methods for good conditions

according to EN 1992-1-1:2004+AC:2010 for good bond conditions (for all other bond conditions multiply the values by 0.7)

Rebar - Ø	Concrete class								
φ	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 25 mm	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

Scell-It Injection System X-PRO for rebar connection

Performances

Minimum anchorage length and minimum lap length Design values of ultimate bond resistance $\rm f_{bd}$